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Summary. An improvement of Harris' theorem on percolation is obtained; it 
implies relations between critical points of matching graphs of the type of the 
one stated by Essam and Sykes. As another consequence, it is proved that 
the percolation probability, as a function of the probability of occupation of 
a given site, is infinitely differentiable, except at most in the critical point. 

1. Introduction 

Percolation problems have been considerably studied in the literature (for an 
extensive bibliography see references quoted in [1-5]). Nevertheless, even in the 
case of Bernoulli measures, there are very few rigorous results; among them 
Harris' theorem ([6, 7]) on non coexistence of infinite clusters o f "  opposite type" 
in the two-dimensional lattices plays a central role; it implies the relation Pc 
+ p * >  1 between the critical probabilities of two "matching graphs". The same 
relation was stated as an equality by Essam and Sykes ([8]) on the grounds of 
very plausible arguments based on an analogy with the case of Bethe lattices 
where exact results are known. 

Harris proved his theorem by showing that if in a two-dimensional graph 
there is a.s. an infinite cluster, say, of +,  one can find an increasing sequence 
{A,} of squares centered in a given site of the graph such that in A,+ I \ A ,  there 
is a closed chain of + with probability greater than some constant not 
depending on n. This implies that a.s. some of these chains actually occur, 
forcing the clusters of opposite type to be finite. 

In this note by using essentially the same techniques as in [6] we comple- 
ment Harris' proof and show that one can control the size of the squares A~ by 
proving that the finite clusters are forced to have also finite mean size. In this 
way one gets a statement which can be inverted so that the inequality Pc + P* > 1 
can be replaced by some equalities. We have not been able, however, to prove 
the relation * -  P ~ + P c  - 1. 
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In Section 2 we define the quantities of interest. The main statement is 
proved in Section 3. In Section 4 we draw some consequences and prove that the 
percolation probability is infinitely many times derivable except at most in the 
critical point. Section 5 contains some final remarks. 

2. Definitions 

Two points in 7/2 which differ only by one unit in one coordinate are called 
adjacent; they are called *adjacent if they are adjacent or such that both their 
coordinates differ by one unit ~. A finite sequence (x~, ..., xn) of distinct points in 
7/2 is called a (self-avoiding) chain if x i and xj are adjacent if and only if l i - j ]  
=1 and a circuit if (x 2, . . . ,x.)  is a chain and xj is adjacent to x 2 and to x,; 
*chains and *circuits are defined in an analogous way. A subset y ~ 7 / a  is 
connected [*connected] if, for all pairs x, y of points in Y,, there is a chain 
[*chain] made up of points in Y, having x, y as terminal points. The boundary 
[*boundary] of a given subset y ~ 7 / z  is the set 0Y[~* Y] of all points in 7 /Z \ y  
that are adjacent [*adjacent] to at least one point in I4. 

Remark. The external boundary of a connected set is *connected and the 
external *boundary of a *connected set is connected 2. 

We consider the configuration space f2 = { -  1, 1} z2. If co e f2, the (+)clusters 
[(+)*clusters] of co are the maximal connected [*connected] components of 
co-~ (1); (-)clusters and (-)*clusters are defined in the same way. A (+)chain in 
co is a chain included in co-t(1) 3. Two sets A, BeT/2 are (+)connected in co if 
there is in o9 a (+)chain starting in A and ending in B. 

If g is a translation invariant probability measure on f2, the #-probability 
that a given site of the lattice belongs to a (+)cluster of size k is 

pk(#)= ~, I~(C.[) (2.1) 
I~l=k 

where for any finite connected subset 7 of ;~2 containing the origin, C~ + is the set 
of all configurations co such that 7 is a (+)cluster in co, and J TI means number of 
sites in Y- 

We put: 

Pk(/_t)= ~ pn(/.t). (2.2) 
n = k + l  

The percolation probability, P~(#)[P*(~t)], is defined as the #-probability 
that the origin belongs to an infinite (+)cluster [( +)*cluster]. 

The mean cluster size, S(#), is the expected value for the measure # of the 
function n(co) which is defined as the size of the finite (+)cluster to which the 
origin belongs if it belongs to any (+)cluster at all and zero otherwise. 

In [8] a definition of matching graphs is given, which, in particular, applies to the graphs G 
= {~2, L}, G* = {712, L*}, where L[L*] is the set of bonds between adjacent [*adjacent] points in 7/2 
2 A statement equivalent to this remark is proven in [8] for any pair of matching graphs. All the 
following can be restated in this more general case 
3 Here and in the following we will not distinguish between chains and their images 
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We have 

s( t= 2 kpk( t= Y, (2.3t 
k = l  k = O  

We denote with a bar, - ,  the functions analogous to Pk(~), P~(#), S(#) 
referred to as (-)*clusters. 

We are particularly interested in the case of the measures: 

#x = [ I  G (2.4) 
i ~ Z  2 

where x~[O, 1] and v~ is the measure on { -1 ,  1} which assigns weights x and 1 
- x  respectively to 1 and - 1 .  In the case of the measures (2.4) we shall write 
simply pk(x), ~(x) . . . .  instead of Pk(#x), Pk(#x),--. 

We have 

pk(x)= ~ xt>'l(1-x) la~l, (2.5) 
171=k 

Po (x) + P~ (x) = x. (2.6) 

If A is a square in 7/2 and we call PA(X) the #x-probability that the origin is 
(+)connected with aA, we have: 

Poo (x) = Inf PA(X). (2.7) 
A 0 

(2.7) implies that Poo(x) is an upper semicontinuous function; this and the 
obvious non-decreasing property of P~ (x) imply that P~o (x) is a right-continuous 
function. 

The critical points are defined by: 

pc=Sup{x[Poo(x)=O}, p*=Sup{xIP*(x)=O}. 

Note that if we call E~o the event that there exists in co an infinite (+)cluster, 
the zero-one law implies that Poo(x)>0 if and only if #x(E~)= 1, so that Pc can 
also be defined as the separation element between the x's such that #x(E~)=0 
and those such that #x(Eoo)--1. 

It is easy to check that 0 <Pc < 1: one can get crude bounds on Pc by applying 
the Peierls argument. 

3. An Improvement of Harris' Theorem 

Our starting point is the following 

Theorem 1. I f  fioo (x) > O, then P~ (x) = O. 

This theorem was first proved by Harris ([6]) in the particular case of the 
bond problem on the square lattice, but, as Fisher has remarked ([73), the proof 
(for two-dimensional graphs) works quite in general. Recently it has been 
extended, in a slightly weaker form, to the case of equilibrium measures for the 
two-dimensional Ising model ([9, 103). 
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Theorem 1 is equivalent to the relation Pc+p* >1. In order to get exact 
relations between the critical points one should require, besides Theorem 1, 
some existence theorem for infinite clusters. On the other hand it is clear that 
Harris' theorem cannot be inverted, because it implies that in those cases (bond 
problem in the square lattice or site problem in the triangular lattice) in which 
connection and *connection coincide both Po~ and/5~ must be zero in x = 1/2. 

We observe, however, that the following proposition holds: 

Proposition 1. I f  # is a translation-invariant measure on f2, P~ (#)= 0 and S(#) < oo, 
then fi~ (#) > O. 

Proof. We consider the event 

Ek= {coef2[in co (k, 0) is (+)connected with the 2-axis}. 

We have 

~(E~)__< ~ P~(~)=s(~)< ~. 
k = 0  k = 0  

Hence the Borel-Cantelli lemma implies that #-a.e. at most a finite number of 
the events E k can occur. For  a given configuration co, if none of the Ek's occurs 
the origin (0, 0) ~ 7Z 2 belongs to an infinite ( -)*cluster.  Also, if a finite, non-zero, 
number of Ek's occur and n is the largest integer such that co ~ E,, it is clear that 
co((n + 1, 0))= - 1 ,  and the point (n + 1, 0) cannot belong to a finite ( - ) * d u s t e r  ?, 
because in this case 6" ? should intersect the 1-axis in some point (N, 0) such that 
N > n +  1, co~E N. Hence #-a.e. co contains an infinite (-)*cluster .  

Proposition I means that if there are neither infinite (+)clusters, nor infinite 
(-)*clusters,  both S(x) and S(x) must diverge. This is intuitively clear, because 
in this case each site in 7Z: is "surrounded" by infinitely many finite clusters of 
both types. Actually, for the measures #~, this is the only case in which the mean 
cluster size can diverge. In order to prove this we need some additional lemmas. 

Lemma 1 (FKG inequalities). I f  we consider in f~ the partial ordering < defined 
setting co 1 <co2 if and only if co l(x )_<co2(x ) for all x s;g2 and we call an event A 
positive [negative_] if its characteristic function is increasing [decreasing], then if 
A and B are both positive (or both negative) 

Vx~[0,  1] I~x(AC~B)>_#~(A)#~(B). (3.1) 

The inequalities (3.1), known as F K G  inequalities in the general case of 
ferromagnetic measures, were first proved in the present case by Harris in [63. 

If L is a positive integer, we call Rr.1 (x) the #~-probability that two given 
opposite sides of the square 

AL = {(xl, x2)~Z211xll <g, Ix21 <g} 

are connected in A/~ by a (+)chain. 

Lemma 2. I f  Po~ (x) > O, then lirn Rr, 1 (x) = 1. 
L ~ o 9  
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Proof If Po~(x)>0, Theorem 1 implies that #x-a.e. there are infinitely many 
(+)circuits surrounding the origin (otherwise, if n is the largest integer such that 
(n, 0) belongs to such a circuit, the site (n+ 1, 0) should belong to an infinite 
(-)*cluster). #x-a.e. all but at most a finite number of these circuits must belong 
to the same infinite (+)cluster (otherwise no infinite (+)cluster should exist). 
Hence for any e>0  there is L 0 such that for all L > L  o the event A L "there is in 
A L a (+)circuit surrounding the origin and included in an infinite (+)cluster" 
has #x-measure bigger than 1 - e, We call A~ (i = 1,... 4) the event that there is in 
AL a (+)circuit surrounding the origin and (+)connected in A L with the i-th side 
of A L. The symmetry properties of #x and the inequalities (3.1) imply: 

4 z 

(here and in the following " ~ "  means complementation). On the other hand it 
is obvious that 

4 
( '~ ~i  ~ . A L c A L ,  

i = 1  

hence -i #x(AL)<e 1/4 and by using again inequalities (3.1) 

i j 1 /4  2 #x(ALc'~AL)>(1-e ) .  

If i and j are referred to two opposite sides we get 

RL, 1 (x) >= #x(AiL ~ AJL) >= (1 - -  e 1 / 4 )  2, 

and this ends the proof. 
The proof of the following lemma is based on arguments similar to the ones 

used in [6] in the proof of Theorem 1. 
We call RL,2(x ) the #x-probability that the two opposite smaller sides of the 

rectangle 

AL, 2 = {(x 1, x2)e 7]2J [x, [<2L,  I.x2 ]<L} 

are connected in AL, 2 by a (+)chain. 

Lemma 3. I f  P, (x) > 0, then lira RL, 2 ( X )  = 1. 
L + c o  

Proof Given e>0, we choose two integers n, L o such that, for all L>=Lo, with 
#x-probability bigger than 1 - g: 

a) there is in A, a (+)circuit surrounding the origin and belonging to the 
infinite ( +)cluster. 

b) there is in A L a (+)chain connecting two given opposite sides of A L. 
c) there is a (+)circuit surrounding the origin and contained in A L \ A  n. 
The existence of n, L 0 follows from Lemma 2 and the arguments used in its 

proof. Let L > L o. Besides A n and A L, we consider the two translates of A L 

B l = { ( x 1 , x 2 ) ~ 2 [ - 2 L = < x l  <0;  I X e [ ~ L } ;  

Be={(x , ,xz) e~z[0<=xl-<2L; ]xzf<=L}. 
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We call sf(A) (i= 1, ...,4) the four sides of a square A, where sl(A ) is the "left 
side" and the others are numbered clockwise. Using b) and the inequalities (3.1) 
in the same way as in the proof of Lemma 2 we get that with #x-probability 
bigger than 1 - e  1/z there is in B i a (+)chain connecting sl(B1) with s3(B1) and 
having as endpoint a site of the 2-positive-half-axis; using (3.1) and c) we get that 
with #x-probability bigger than (1-~1/2)(1-e)  such a chain can be found in 
B I \ A  .. We call C the set of the chains of this type. If c e  C we call c' the chain 
obtained by reflecting c with respect to the 2-axis and we call S c[Sc, ] the set of 
sites in BI[B2] ',below c[c']". We order C by putting c l<c  2 if S~1~Sc2. It is 
easy to see that if in a given configuration co there is a non-empty set 1 of 
(+)chains belonging to C, then there is in I only one maximal element, namely 
the chain c I = (~* ([,_) S~)) c~ B 1. 

c~I 

We define 

Dc={coef21in co c is the maximal (+)chain  connecting sl(Bx) 

with s3(B~) and it is (+)connected in B i with s2(Bi) }. 

We have: 

#x( ~ Oc) = ~, #x(O~) > (1 - e)2 ( 1 -  e1/2) (3.2) 
c~C c~C 

where we have used the fact that if there is a (+)chain in B 1 connecting s2(B1) 
with s4(B1), then c is certainly (+)connected with s z(B1). 

We consider now the following events: 

F = {co E ~2 [in co there is in A, a (+)circuit surrounding the origin and 

(+)connected in A L with s2(AL) }. 

E~ [E~,] = {co ~ Olin co c [c'] is ( +)connected in S~ u S~, 

with a (+)circuit surrounding the origin}. 

a) and the inequalities (3.1) imply that # x ( F ) > l - e  1/4. On the other hand, for 
any c ~ C , /~  c~/~c' ~ ~ and #~(E~) = #x(E~'); hence we have 

so that 

Vc~ C #x(E~) > 1 - e  ~/8. (3.3) 

We consider now the event A = ~ (/)r c~ Ej .  (3.2), (3.3) and the remark that for 
c~C 

any c ~ C De and E~ are independent events imply: 

#~(A) = ~ #x(Dr #x(E~) >= (1 - e)2 (1 - ~l/z)(1 - ~i/8). 
cEC 

We call A' the event obtained from A by reflection with respect to the 2-axis. A 
and A' are positive events; hence 

#x (A c~ A') > (1 - ~)4 (1 - el/2)2 (1 - el/8)2. 
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The lemma is proved by the remark that if A c~A' occurs, then there is a 
(+)chain in BlwB 2 connecting sl(B 0 with $3(B2). 

Lemma 4. I f  P~o (x) > O, then lim RL, a(x) = 1 (where RL,3(x) is defined in an 
obvious way). L ~  

Proof This lemma is an easy corollary of Lemma 3; it suffices to observe that if 
we consider a rectangle R of sides L and 3L as the union of three adjacent 
squares Qz, Qz, Q3 and if there are (+)chains connecting the opposite smaller 
sides of the rectangles Qx ~ Q2 and Q2 C.)Q3 and there is a (+)chain connecting 
the two sides of Q2 adjacent to/~ (note that all these are positive events, so that 
(3.1) can be applied), then there is also in R a (+)chain connecting the smaller 
sides of R. 

Theorem 2. Po~ (x)> 0 if and only if _fi~ (x)= 0 and S(x)< oo.  

Proof. The "if" part of the theorem is proved by Proposition 1. 
Suppose P~(x)>0, given e>0, Lemma4 implies that we can choose an 

integer Lo(x ) such that for any L>Lo(x ), Rr,3(x)>l-e.  We consider the 
sequence of squares AL,, Ln=3"Lo(x). By applying once more the inequalities 
(3.1) it is easy to check that for any n >  1, a (+)circuit surrounding the origin is 
contained in ALn\AL,_I with #x-probability bigger than (1-e)  ~. The origin can 
belong to a (-)*cluster of size greater than an=4.32"(Lo(X)) 2 only if for all 
i~{l  . . . . .  n} such a circuit does not exist in AL,\AL, . 

Hence we have: 

/ ~ . ( x )  __< (1 - (1 - e)~)" (3.4) 

(3.4) and the remark that/~(x) is a non-increasing sequence implies: 

o o  a o oo an + 1 

k ~ O  k = O  n=O k = a n + l  

<4(Lo(x))2+ ~ (a,+l--an)fla.(X) 
n=O 

i 
n=0 

The last series is convergent if e is small enough. This, together with Theorem 1, 
proves Theorem 2. 

4. The Percolation Probability 

In this section we consider the consequences of Theorem2 on the regularity 
properties of the function P~o(x). For this we need a slight improvement of 
Theorem 2. 
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If in the configuration co there is an infinite ( +)cluster C, we call "hole" of co 
a maximal *connected component of 772\C. It is easy to see that, if H is a hole, 
the set B(H)=Hc~3C is included in a (-)*cluster and IB(H)t2>IH[ 4 

We consider the function h(co) defined as the size of the hole to which the 
origin belongs if it belongs to any hole at all and zero otherwise, and we put 

qk(x)=px(h-l(k)); Qk(X)= ~ q,(x). 
n = k + l  

The expected value for the measure #~ of the function h(co) is 

H(x)= ~ kqk(X)= ~ Qk(X). 
k=O k = 0  

(4.1) 

(4.2) 

The following proposition holds as a corollary of Theorem 2: 

Propos i t ion  2. I f  P~o(x) > 0 ,  then H(x) < pc. 

Proof. We use the same notations as in the proof of Theorem 2 and rewrite (3.4) 
in the form: 

/~n (x) _< 0". (4.3) 

We consider the square Aa~ .. (4.3) and the inequalities (3.1) imply that the event 
"no site in A,~ belongs to a (-)*cluster of size greater than a," has a #~- 
probability greater than 

(1 - 0") (2~+ 1)~ > (1 - 0") 5~. 

2 and 2 On the other hand if the origin belongs to a hole H of size between a, a,+ 1, 
then B(H) must intersect Aa~ " and all sites in B(H) belong to a (-)*cluster 
greater than a,. Hence we get: 

a2+1 

2 
k=ana+ t 

qk(X) _--< 1-- (1-- 0") S a," = 1 -- (1 -- 0") S (2 Co(x))8 38 

_-< 5 (2Lo(x))S (3 s 0)', 

Q~ ~ qk(x)= ~ ot,+~ qk(X) < lO(2 Lo(x))S(3S O)" (4.4) 
k = a 2 +  1 h = n  k=a~+l 

(where we have supposed 3s0 < 1/2, as it is certainly true if Lo(x ) is big enough). 
The bound (4.4) together with the remark that Qk(X) is a non-increasing 
sequence imply the convergence of (4.2). 

Propos i t ion  3. I f  P~ ( x ) > O, then S ( x ) < c~. 

Proof. It is an immediate corollary of Proposition 2. 

Propos i t ion  4. I f  0 < x < 1, x =g Pc, then Po~ is infinitely many times derivable in x. 

This inequality can be proven by observing that if we put 

L= Sup Sup[xi-yl l  , then [HI<L 2, [B(H)[>L 
i= 1,2 x,yeH 
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Pro@ If  x < G  the s ta tement  is t r ivia l ly  true. Suppose  x > Pc. We observe that  

eoo (x) = x - ~ pk(x) = x - Z xl'l (1 - x) j~ (4.5) 
k = l  y 

where 7 runs over  the family of  all finite connected subsets of  ~2 containing the 
origin. Differentiating te rm by te rm we get the series: 

1 - ( l / x )  ~ kpk(x ) + (1/(1 - x)) ~ h rh(X ) (4.6) 
k = l  h=l 

where rh(x ) is the #x-probabi l i ty  that  the bounda ry  of the (+)c lus te r  to which 
the origin belongs has size h. Using the bound  (4.4) and taking into account  that  
Qaa is a non-increasing function of x, it is easy to check the uniformity  of  the 
convergence of the series (4.6) in any interval (x~, xz), x~ >Pc, x2 < 1. In the same 
way one can check the existence of the higher order  derivatives. 

5. Concluding Remarks 

If  one defines, besides Pc and p*, the other  two "crit ical  po in t s"  

G=Sup{x lPoo(x)=O,  S(x )<  oe}, 

* = S u p { x l P * ( x ) = O ,  S*(x) < Go}. gc 

T h e o r e m  2 can be writ ten 

* =~c+p~*=l .  (5.1) Pc + G 

If  one can prove, as one expects, that  the relat ion p c + p * = 1  holds, then (5.1) 
should imply that  Pc--no, so that  the mean  cluster size should diverge in at  mos t  
one point.  We r emark  that  conversely if one is able to p rove  that  p c = G  s, then 
the relat ion Pc +P*  = 1 should follow directly f rom Proposi t ion  1. 

The  p rob lem above  is related to the other  open p rob lem of the cont inui ty 
propert ies  of  P~ in G. In fact the r ight-cont inui ty  of  P~ implies that  it is 
cont inuous in Pc if and only if P~(pc)=0;  at least for the t r iangular  lattice by 
T h e o r e m  1 this is certainly true if pc=no (so that  both  are equal to 1/2) because 
in this case Poo (Pc) = / 5  (G). 
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5 This should be an assumption very similar to the one made in [8] that the function "mean 
number of clusters per site" has Pc as unique singular point 
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