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Percolation points and critical point in the Ising model 

Antonio Conigliot, Chiara Rosanna Nappi, Fulvio Peruggi and Lucio 
RussoS 
Istituto di FisicaTeorica, Universiti di Napoli, Mostra d’oltremare, Pad. 19, Napoli, Italy 

Received 23 July 1976 

Abstract. Rigorous inequalities are proved, which relate percolation probability, mean 
cluster size and pair connectedness respectively with magnetization, susceptibility and pair 
correlation function in ferromagnetic king models. In two dimensions the critical point is 
shown to be a percolation point, while in three dimensions this is not true. 

1. Introduction 

The site and bond percolation problem has been applied to various phenomena (for 
review articles see Frisch and Hammersley 1963, Shante and Kirkpatrick 1971, Essam 
1973). For a given lattice and a given density of particles distributed at random on its 
sites, one can look at the distribution of clusters of particles linked together by 
nearest-neighbour bonds. The main task of the site percolation problem is to evaluate: 
(i) the percolation probability, i.e. the probability that a given particle belongs to an 
infinite cluster; (ii) the mean cluster size, which is a weighted average of the cluster size; 
(iii) the pair connectedness, which is defined as the probability that two given sites are 
connected by at least one chain of occupied sites belonging to finite clusters. There is a 
critical density where these quantities behave in a very similar way to spontaneous 
magnetization, the susceptibility, and the pair correlation function in a ferromagnet 
near the critical point. 

A general model has been introduced by Kasteleyn and Fortuin (1969,1972), which 
includes as a particular case the bond percolation problem and the king model. With 
this formulation it has been possible to apply the usual Hamiltonian technique, 
including the renormalization group, to the percolation problem (Harris et a1 1975, 
Amit 1976, Priest and Lubensky 1976). 

The existence of an infinite cluster plays an important role in the theory of dilute 
systems such as ferromagnets (Essam 1973, Sat0 er a1 1959, Elliott and Heap 1962, 
Rushbrooke et a1 1972, Rapaport 1972a, b, Stauffer 1975a, b, Griffiths and Lebowitz 
1968, Bishop 1975, Young 1976) and inhomogeneous conductors (Kirkpatrick 1973 
and references cited therein, Stinchcombe 1974). Some of these problems have been 
treated with the renormalization group approach (Lubensky 1975, Krey 1975a, b, 
Harris er u1 1976). 

t CNR, Gruppo Nazionale di Struttura della Materia. 
-t CNR, Gruppo Nazionale di Fisica Matematica. 
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A suggestion has been advanced by Bishop (1973, 1974) to relate the Curie 
temperature T, to the critical probability of the bond and the site percolation problem. 

By introducing a ferromagnetic interaction among the particles, the system changes 
into a lattice gas model, or, in the magnetic terminology, into a king model. In such a 
model, one can study at the same time percolation and phase transitions in order to find 
out if there is an influence of one over the other. Since percolation also occurs with zero 
interaction, while phase transition does not, one should expect, if any connection exists 
between them, that the former would influence the latter. 

The cluster distribution in an Ising model has been considered by Binder (1975) and 
Muller-Krumbhaar (1974), Binder et a1 (1976) in connection with the nucleation 
problem, and by Domb (1974) who suggested that only ramified clusters play a 
significant role in the neighbourhood of the critical point. This suggestion has been 
checked later by means of Monte Carlo calculations (Domb et a1 1975). We shall 
discuss this point in the last section. Recently Lebowitz (1976) has derived some cluster 
inequalities in the Ising model, which have been found useful in the study of metastable 
states. 

Kikuchi (1970) first derived an approximation for the percolation problem with 
interaction. The percolation probability in a three-dimensional ferromagnetic Ising 
model has been calculated by means of Monte Carlo technique by Muller-Krumbhaar 
(1974b), who concluded that for zero external field, an infinite cluster of overturned 
spins appears at a temperature T, below the Curie temperature Tc. The same result was 
found on a large class of branching media such as Bethe lattices, by Coniglio (1976) who 
has also suggested (Coniglio 1975) that this should be the case for any three- 
dimensional system, while for two-dimensional systems Tp and Tc should coincide. This 
last conjecture was advanced on a different basis by Odagaki et a1 (1975). 

Recently, in a previous paper (Coniglio et a1 1976, to be referred to as I), we have 
studied the connection between phase transitions and percolation in an king model in a 
rigorous way, proving that such a link exists. The main result was to prove two 
theorems: (1) in a ferromagnetic Ising model, the spontaneous magnetization is less 
than or equal to the percolation probability, and (2) for a large class of two-dimensional 
models with ferromagnetic interaction there is no coexistence of infinite clusters of spins 
‘up’ and spins ‘down’. This is a generalization of a theorem proved by Harris (1960) for 
the random bond problem on the square lattice. Fisher (1961) subsequently proved it 
for the random site problem on a large class of planar lattices. Recently Miyamoto 
(1975) has generalized Harris’s result to a class of interacting systems. 

In this paper we shall continue the study of the connection between phase transitions 
and percolation in the Ising model. In § 2 we first introduce the terminology and then, 
from general properties of the king model, we obtain some inequalities from which we 
derive theorem 1 of I. Other relations between correlation function and pair connec- 
tedness, which lead to an inequality between the susceptibility and the mean cluster size 
are derived in 0 3. 

As a consequence of theorems 1 and 2, in 9 4  it will be shown that in a two- 
dimensional king model at H=O, the critical temperature T, and the percolation 
temperature Tp coincide. This, combined with the result of § 2 leads to inequalities 
between ‘percolative’ critical indices and the usual ferromagnetic critical indices p, ‘y, Y 
(Fisher 1967a). 

In § 5 a phase diagram is suggested which shows distribution of infinite clusters in the 
density-temperature and external field-temperature plane. The conclusions follow in 
§ 6. 
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2. Spontaneous magnetization and infinite clusters 

Consider a d -dimensional Ising model with nearest-neighbour ferromagnetic interac- 
tion. Let Z d  be the d-dimensional lattice whose points have integer coordinates in R d .  
Introduce the lattice gas variables relative to the point of coordinate i :  

T i  = 3 ( 1 - a 1 ) ;  1 Gi = f ( l + q ) ;  

where a, = f 1 is the usual spin variable. 
For a finite set A c Zd we define 
In a given configuration a (+)-cluster ((-)-cluster) is defined as the maximum 

number of ‘up’ (‘down’) spins such that any two of them can be connected by at least one 
chain of nearest-neighbour ‘up’ (‘down’) spins. 

Let us call y i ( y y )  the characteristic functions of the event that the spin in i belongs to 
a finite (infinite) (-)-cluster and y i j ( y T )  the characteristic function of the event that i 
and j belong to the same finite (infinite) (-)-cluster. 

Ti, y I  , yij and T: will denote the analogous functions for (+)-clusters. Of course, 
the following relations hold: 

= l I i e A  T,; GA = l-IIleA f i i .  

-00 .. 

TI = yi + y y ;  GI = T I  ++:. (1) 
A function F ( a )  of the variable U = {al, . . . , mN} is said to be non-decreasing if 

F ( a l ,  . . . , a N ) S F ( a i , .  . . , c&) when mi s a :  and non-increasing in the opposite case. 
If A. is a d-dimensional cube containing the origin, aAo its boundary, and U c Ao, we 

denote by (F(a)),,, the thermal average for the Ising model in the volume A = A,, U dAo 
with (*)-boundary conditions on aAo while ( F ( a ) ) ,  denotes the thermal average with 
zero boundary conditions. 

By definition: 

Moreover, we define: 

( F ( a ) )  = lim (F(a)),,. 
Ao+m 

(F(a))* = jjlm ( F ( a ) ) A , ;  

We recall here two properties of the ferromagnetic nearest-neighbour Ising model. 
(i) FKG inequality (Fortuin et a1 1971). If f(a) and g ( a )  are both non-decreasing or 

non-increasing functions of a, then ( f ( a ) g ( a ) ) A  a ( f ( a ) ) A ( g ( a ) ) A .  Consequently, if 
either f(a) or g ( a )  is non-increasing when the other is non-decreasing, we have 
(f(U)g(a))A s (f(a)).t(g(a)).,. As an example we have: 

( T A T B )  2(7TA)(rB); (2) 
(7r T )s(7rA)(fiB); (3) 

A - B  

for any finite set A and B c Zd.  
(ii) Markov property. Given a set A c Z d  and its boundary aA, let us denote by 

P( YlXu ax) the probability of an event Y outside A given the configuration X u  ax 
on A U aA. By definition: 

P(Y/Xudx)= P(Y, XuaX)/P(Xuax), 

where P( Y, Xu ax) is the probability that both the events Y and X u  ax occur. The 
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Markovian property states that P( YIX U ax) = P( Y(8X). As a consequence of proper- 
ties (i) and (ii) we shall derive the following inequalities which will be used later on: 

where A c Zd and xB is the non-decreasing characteristic function of an event B 
outside A. 

In fact, by applying first the Markovian property and then the FKG inequality, we 
have: 

Of course (6) and (7) hold in the opposite direction (<++a) if xB is non-increasing. 
Now, let us prove the following. 

Theorem 1. In a ferromagnetic Ising model with nearest-neighbour interaction for zero 
external field (H = 0) and below the critical temperature (T< T,) the following inequal- 
ity holds: 

W O + ,  7‘) R,(O+, 7‘) - R@+,  T) ;  (8) 

where M(O+, T )  is the reduced spontaneous magnetization and R,(O+, 7‘) (R&(O+, 7‘)) is 
the density of ‘up’ (‘down’) spins belonging to an infinite (+)-cluster ((-)-cluster) in the 
positive phase ((+)-boundary condition). The percolation probability for ‘up’ (‘down’) 
spins is obtained by dividing Rt(RJ by the density of ‘up’ (‘down’) spins. 

With the symbol O+(O-) we shall always mean H=O and (+)-boundary ((-)- 
boundary) condition. 

Proof. We have: 

W O + ,  T )  = (Go>+ -(To>+ = (?cl)+ -(Yo)+ +(?,”>+ - (Y,”)+. 

(?3+ = R@+,  T ) ;  = RL(O+, T) ;  (10) 

(To)+ -(Yo)+ 0 (1 1) 

(9) 

The subscript 0 refers to the origin. Since by definition 

we will show that 

in order to prove the theorem. 
The above inequality expresses the fact that in the positive phase the density of ‘up’ 

spins belonging to finite clusters is less than or equal to the corresponding density of 
‘down’ spins, even though the total density of ‘up’ spins is larger than the total density of 
‘down’ spins. 

By definition: 
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where i o s ( O + ,  T )  (nos(O+, T) )  is the mean number of (+)-clusters ((-)-clusters) of s 
spins, containing the origin 0 in the positive phase, and is given by 

where Aos is a cluster of s spins containing the origin and dAos is its boundary. The sum 
is over all the finite clusters of s spins containing the origin. From (6) and (7): 

For the symmetry (H  = 0): 

(7 jAOSTJA0")  '4- - (TA0s7jJAO*)A* (17) 

i ios(O+, n< nos@+, T). (18) 

Consequently, from (13)-( 16): 

Equation (1 1) follows from (12) which proves the theorem. 

This theorem says that spontaneous magnetization can only exist if there is an 
infinite cluster. The reverse statement is not true. This is obvious in a pure percolation 
problem without interaction, where numerical calculations (Sykes et a1 1976a, see also 
Shante and Kirkpatrick 1971, Essam 1973) in three-dimensional models show that the 
critical concentration is less than 1/2, which means that an infinite cluster can well exist 
without magnetization. 

This theorem also does not say that the magnetization always implies (including 
H f  0) an infinite cluster, as numerical calculations (Sykes et ai 1976b) show in 
two-dimensional models at zero interaction, where the critical concentration is found to 
be larger than 1/2. In conclusion, what we learn from this theorem is that the infinite 
cluster is the necessary structure which can carry the information of the long-range 
order. 

3. Spin-spin correlation function and pair connectedness 

Before we prove the second theorem let us give a few definitions. 
The pair correlation function is defined as 

gij = (miuj)  - ( g t  Xu/ ); 
or in terms of lattice gas variables: 

gij = 4((vir j  ) - (ri )(Ti)) ; 

glj = 4((7ji7j,)-(ei)(7j/)).  



210 A Coniglio, C R Nappi, F Peruggi and L Russo 

Let us also define the pair correlation function for spins belonging to infinite 

(22) 

clusters: 
o o m  g T = 4 ( ( y i  y j  )-(y?)(y,?)), for ‘down’ spins; 

= 4 ( ( 7 7 7 7 ) - ( 7 7 ) ( 7 7 ) ) ,  for ‘up’ spins. (23) 

The pair connectedness function is defined as the probability that two spins i and j 
belong to the same finite cluster and is given by 

Pij = ( ~ i j ) ,  

Pi, = ( T l j ) ,  
for ‘down’ spins; 

for ‘up’ spins. 

Note that gii = gil and pij = iii only in the symmetrical case (H = 0, T > T,) while (20) 
and (21) are always equal even though they are the correlation functions for ‘up’ and 
‘down’ spins. 

Now, we shall prove the following theorem. 

Theorem 2. For a ferromagnetic Ising model with nearest-neighbour interaction we 
have: 

gii 6 4pii + g;; 

gij s 4 i i j  + 2:. 
(26) 

(27) 

Proof. From (1): 
A -aA B -JB ( r i r j ) = ( Y i r j ) + ( y ? r j )  =pij+ 1 (r T r j )+(~“7>+ 1 ( 7 : ~  T >; 

A si Bai 
A d j  B 3 j  

where A and B are clusters of s spins. 

opposite direction: 
rj and y? are non-increasing functions, so that we can apply inequality (6) in the 

A d j  B3 j  

By adding and subtracting ( y y ) ( y T )  we have: 

( r i r j )  - (Ti >( r j )  s Pij + ; 

and, from (20): 

gij 6 4 ~ i j  + g y *  

The second part, equation (27), is proved in the same way. 
It is not difficult to prove also that 

1 -O0 < ( f?) I p’“ * 
S i j  il 11 ’ i g ;  6 ( y?) E pep. 

sgij 1 s p . .  11 + p “ *  11 ’ 

11 11 ’ 
which, together with (26) and (27), give: 

agij q j i j  + b y .  11 ’ 
which is analogous to theorem 1. 
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Inequality (29) states that long-range correlation exists if there is large connected- 
ness. In other words the information can propagate from i to j only if i and j are 
connected by an ‘open’ path. This was conjectured by Reatto and Rastelli (1972), who 
produced on this basis, an explicit form for the spin-spin correlation function. 

From theorem 2 we can derive some relations between the susceptibility and the 
mean cluster size. The susceptibility satisfies the following relation (Fisher 1967a): 

x ( H  T)=C g o j ( W  T ) .  
i 

By analogy define 

The mean cluster size of ‘down’ spins is defined by 
-1 

and is related to the pair connectedness function (Essam 1973) according to the 
following relation: 

The same relations hold for ST(H, T )  and ioi. 
From theorem 2 we have: 

x ~ ( Y O ) S J  +x?, X G ~ ( ~ O ) S T + X T .  (31) 

We will show in the next section that all these relations, valid for all dimensionalities, 
can be specialized in two dimensions by using the following theorem proved in I. 

Theorem 3. For a square ferromagnetic Ising model with nearest-neighbour interaction 
we have : 

(32) 

This equation states that an infinite (+)-cluster can never coexist with an infinite 
(-)-cluster. This is an old result proved by Harris (1960) for the random bond problem, 
and generalized by Fisher (1961) to the site problem on a large class of planar lattices. 
Recently Miyamoto (1975) extended Harris’s result to the bond problem with fer- 
romagnetic interaction for the symmetrical case ( H =  0, T s  TJ.  Theorem 3 can also be 
extended to all simple planar graphs which admit an elementary cell and two axes of 
symmetry. 

R#f, T)RJ(H, T )  = 0. 

4. Two-dimensional model: coincidence of critical point with percolation point 

In this section we consider two-dimensional ferromagnetic Ising models with nearest- 
neighbour interaction for which theorems 1, 2 and 3 hold. 

The density of ‘down’ spins is given by 

P W ,  7-1 = ( T o ) .  (33) 
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Define for T a T,: 

P c V )  = sup { P W ,  T ) :  RJW, T )  = o> 
Thxod 

where p,(oO)=p: is the critical probability in the random case. 
For the symmetry: 

(34) 

R@, T )  = RL-H, T).  (35) 

Rj(0, T )  = 0; (36) 

From theorem 3, for H = 0 and T 5 T,: 

and from (34), p c ( T ) 5 + .  
For T <  T, definition (34) may be misleading, since the density does not change 

continuously across the coexistence curve. Therefore (34) can be extended to the 
values TpS T <  T, for which p(O+, T,) =pc(T,)cpc(T)cp(O', T). 

It is also convenient to define critical probabilities on the coexistence curve ( H =  0, 
T< T,). The density of overturned spins along such a curve is given by: 

Express RJ as function of p :  

The critical density on the coexistence curve is given by 

Pc  = SUPb :Rl(P) = 0). (39) 

From theorem 1 and (35): 

and 
RJ(0,  T )  = R,@, T )  = 0 ( H = 0 ,  TST,). 

From (38)-(40) along the coexistence curve: 

In other words, for H = 0, the critical point and percolation point coincide for any 

From (40) and (41) R?(O+, T )  is different from zero for T <  T, and zero for T >  T,. 

If we suppose that 

sufficiently regular planar lattice with nearest-neighbour ferromagnetic interaction. 

We do not know if there is a jump or not at T,. 

where (To)+ and (YO)+ are defined by (12), then from (9): 

lim (+:)+= lim (y;)+, 
T+ T,  T+ T,  (44) 
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which from (10) and the second equation of (40) gives 

so that no jump occurs at T,. 
In this case we can introduce two critical indices: 

1 
R l ( p )  - ( p -pC) 'p  2: ( T, - T)BT, p c  = T .  

On the other side: 

M(O+, T)  = ( p  - p c )  - ( T,- T)', P =' 8 .  

From (38) and (40): 

P T  P. 
In the same way, from (31) and theorems 1 and 3: 

If we suppose that the expression 

is true, from (30) and (44) it follows that 

lim Si(O', T )  = lim S,(O', T) .  
T+ T,  T+T,  

Consequently, from (50) and (51) S?(O', T )  diverges at T,. 
Defining 

S,(O+, T)-(T,-T)-'% T <  Tc, 

from (18) and (30): T;G y;. 
Let us define the connectedness length as 

213 

(45) 

(46) 

(47) 
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and its critical indices 

t,(O’, 7’) - (T,  - T)-”’ 

t C ( O 7  T )  - (Tc - 

T <  T, 

Ta T, 

in analogy with the correlation length (Fisher and Burford 1967) 

and its critical indices 

v = v r = l .  
t (O ’ ,  T)-(T,- T)-”’, T <  Tc, 

((07 T )  - (Tc- TI-”, T a T,, 

From (26) and theorem 3 (no infinite (-)-clusters): 

U+ U’; UT 3 U. 

In conclusion, for planar models the critical point ( H =  0, T =  T,) is also the critical 
point for percolation as conjectured by Coniglio (1975) and Odagaki et a1 (1975). 

5. Phase diagram of infinite clusters 

Theorems 1 and 3 allow us to conjecture the phase diagram of infinite clusters. In figure 
l ( a )  in the plane (H/kT,  T), the hatched regions correspond to infinite clusters of ‘up’ 
spins ( H >  0) and ‘down’ spins ( H <  0). The two curves starting from T, correspond to 
critical points for percolation: they tend asymptotically to the limit of a non-interacting 
percolation point corresponding to a critical density p :  a 1/2 (theorem 1). The width of 
the region ( T >  T,) where there are no infinite clusters should tend to zero in the limit 
case of the triangular lattice for which the critical density p:  = 1/2 as shown by Sykes 
and Essam (1964). For other planar lattices numerical calculations (Shante and 
Kirkpatrick 1971, Essam 1973, Sykes et a1 1976b) show p : >  1/2. Along the two 

p t  

Figure 1. Phase diagram for the two-dimensional king model. The hatched region 
corresponds to the presence of infinite clusters. (a) is relative to the temperature reduced 
magnetic field phase; (6) is relative to the temperature-density of ‘down’ spins phase. The 
critical point T = Tc, H = 0 ( p  = f )  is a percolation point from which two lines of percolation 
points for ‘up’ and ‘down’ spins start. They tend (as T + w )  to the percolation point for 
non-interacting spins. In (b) the dotted curve is the coexistence curve and the broken curve 
is the critical line of percolation points. 
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curves the critical indices should not vary as Monte Carlo calculations show (Odagaki et 
a1 1975), but at the critical point they might change. It should be interesting to employ 
numerical calculation techniques in order to find out if this is true and to discover the 
relative crossover. 

In figure l (6)  the same diagram is given in the (p, 7') plane. The dotted curve is the 
coexistence curve. The broken curve corresponds to critical points for percolation in 
the non-stable region. It is very plausible that they should correspond to spinodals. It 
would be interesting to investigate this point. 

From figure l (b)  it is clear that the critical density is an increasing function of the 
strength of the interaction as this should facilitate the aggregation of clusters. This 
property has been verified in Monte Carlo calculations (Odagaki et a1 1975) and is also 
true in the Bethe lattice (Coniglio 1976) which gives exact results for high values of the 
dimensionality. We think then that it should be valid also for intermediate dimension- 
ality, d > 2. 

For dimensions d a 3 we can only apply theorems 1 and 2. In fact we should expect 
that, in this case, given the large connectivity, two infinite clusters of + and - spins can 
well coexist as happens for large dimensionality (Bethe lattice) (Coniglio 1976), and as 
numerical calculations show either for non-interacting (Essam 1973) or for interacting 
spins (Muller-Krumbhaar 1974a). 

However we can still introduce some critical indices: 

and we must still have from theorem 1 that PT S p ;  pp s 1. 
The critical point is no longer a percolation point, and one should expect that 

S,(O+, 7') and SI(O', T)  are finite at T,. If this is the case from (31) $(H, T )  and 
xy(H,  7') exhibit a divergence stronger than x(H,  7') at the critical point. 

It is instructive to consider the following Hamiltonian: 

where we have introduced a field H which is coupled to the infinite clusters. If 
F(H, H', 7') is the free energy of such a Hamiltonian, 

which can be interpreted as a new order parameter and 'susceptibility'. 
Figure 2 shows our conjecture of the phase diagram for infinite clusters which is 

based on theorem 3 and numerical calculations of p: .  The hatched region corresponds 
to infinite clusters. The double hatched region around p = 1/2 corresponds to the 
coexistence of an infinite (+)-cluster with an infinite (-)-cluster. In the figure is also 
shown Tp, the temperature for percolation at H = 0. Note that Tp < T,. 

We now want to relate our results to those of the droplet model (Fisher 1967b). This 
model gives good qualitative results but is unsatisfactory in many respects (Domb 1974) 
which have been partly removed by modifying it opportunely (Reatto 1970, Reatto and 
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”t 

Figure 2. Phase diagram for the three-dimensional king model, dividing regions with 
infinite clusters of ‘up’ spins from those with infinite clusters of ‘down’ spins. The double 
hatched region corresponds to the coexistence of infinite clusters of ‘up’ and ‘down’ spins. 

Rastelli 1972, Stauffer et a1 1971). Its peculiarity remains the divergence in the size of 
the clusters at the critical point. We have shown that this should be the case in two but 
not in three dimensions. This is, we think, one of the main reasons why this model fits 
well with the numerical data of Monte Carlo calculations in two dimensions (Stoll et a1 
1972), but not so well in three dimensions (Muller-Krumbhaar 1974b). 

We think that another difference between two- and three-dimensional models is 
based on the shape of finite clusters near the critical point. It is expected that large 
ramified clusters should be relevant near percolation points, since these will give rise to 
an infinite cluster with very low density. In two dimensions, as we have shown, critical 
point and percolation coincide. That is why large ramified clusters should be relevant at 
the critical point. This is in agreement with the conjecture advanced by Domb (1974) 
and Stauffer (1975~1, b) and also with the suggestion due to Binder (1975). In three 
dimensions, however, the critical point and the percolation point do not coincide any 
more and the critical point behaviour will be dominated by an infinite cluster. The 
compactness depends on how large the percolation probability is for ‘down’ spins, 

6. Conclusions 

In conclusion, we believe that from theorems 1, 2 and 3 we have gained a deeper 
understanding of the phase transitions. In particular the information of the long-range 
order or long-range correlation can propagate only through infinitely large connected 
paths of spins in the same state. 

From such theorems we have derived phase diagrams for two- and three- 
dimensional models, which although very plausible have Iiot been derived rigorously. A 
further study, either numerical or rigorous, to verify these conjectures should be very 
interesting. The main difference between two- and three-dimensional systems is the 
different location of the percolation point on the coexistence curve. In the first systems 
for H =  0, the percolation temperature Tp coincides with the critical temperature T,, in 
the second systems TpS T, (even though there are reasons to believe that for the 
majority of three-dimensional models Tp < T,). Such a difference between two- and 
three-dimensional models might be connected to the origin of some of their different 
properties, such as the behaviour of the surface which separates the plus from the minus 
phase, which is rigid in three dimensions and fluctuates in two dimensions. These and 
related problems are under investigation. 
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our theoretical predictions. 
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